EconPapers    
Economics at your fingertips  
 

Heat transfer characteristics in a large-scale bubbling fluidized bed with immersed horizontal tube bundles

Artur Blaszczuk, Michal Pogorzelec and Tadaaki Shimizu

Energy, 2018, vol. 162, issue C, 10-19

Abstract: This work investigates heat transfer characteristics in a bubbling fluidized bed with a submerged superheater tube bundles under conditions of an integrated fluidized bed heat exchanger (Integrated Recycle Heat Exchanger, Intrextm) of a large-scale circulating fluidized bed boiler. The effect of mean bed particle size, normalized suspension density, and fluidizing number on the average heat transfer coefficient between the immersed horizontal tubes and the bed was evaluated. The physical parameters of bed particles and fluidizing air in the external heat exchanger were measured at different CFB unit loads. Bubble fraction and contacting time of emulsion phase on the heat transfer surface were calculated on the basis of operating data of fluidized bed heat exchanger. A mechanistic heat transfer model was used to predict the heat transfer coefficient. Depending on emulsion density and the local dynamics of gas and bed particles, the average heat transfer coefficient (havg) varied in a range of 255–381 W/(m2K), showing an increasing trend with the decrease in bed particle size. Moreover, havg decreased with increasing emulsion contact time on the tube surface with the reduction of the solids mixing. Obtained results were compared with literature data.

Keywords: Bed-to-tube heat transfer coefficient; External heat exchanger; Bubbling fluidized bed; Horizontal tube bundles (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218315160
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:162:y:2018:i:c:p:10-19

DOI: 10.1016/j.energy.2018.08.008

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:10-19