EconPapers    
Economics at your fingertips  
 

Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system

Yuanyuan Zhou, Tao Zhang, Fang Wang and Yanshun Yu

Energy, 2018, vol. 162, issue C, 299-308

Abstract: In this paper, a novel thermoelectric assisted indirect evaporative cooling system is proposed. Specifically, thermoelectric cooling (TEC) modules are sandwiched between channels of a flat plate cross flow indirect evaporative cooler. A mathematical model of the novel system is developed, and influences of main operating and geometrical parameters on the system's performance are analyzed in detail. Analytical results show that with the assistance of the thermoelectric cooling, the proposed system is able to cool primary air to a temperature much lower than inlet air wet bulb temperature, even dew-point temperature, meanwhile keep a relatively high coefficient of performance (COP), by selecting appropriate number and electric current of TEC modules. The dew point effectiveness and COP of the proposed system change monotonously with inlet mass flow rate, temperature and humidity ratio of primary air, respectively. The dew point effectiveness also varies monotonously with the mass flow rate ratio of secondary air to primary air. However, there exists an optimal mass flow rate ratio resulting in a maximum COP. Moreover, under variable number and electric current of TEC modules, there always exist optimal widths of primary air channel and secondary air channel, leading to a maximum COP.

Keywords: Indirect evaporative cooling; Thermoelectric; Dew point effectiveness; Coefficient of performance; Optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218315214
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:162:y:2018:i:c:p:299-308

DOI: 10.1016/j.energy.2018.08.013

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:299-308