Phase-changing materials for thermal stabilization and thermal transport
Marjan Krašna,
Eva Klemenčič,
Zdravko Kutnjak and
Samo Kralj
Energy, 2018, vol. 162, issue C, 554-563
Abstract:
We consider systems exhibiting a temperature driven thermodynamic first order phase transition in orientational ordering. The latent heat is released (absorbed) on entering (exiting) the low temperature phase and this mechanism could be exploited for thermal stabilization. Namely, during the phase transition the temperature remains constant. Furthermore, if orientational ordering can be manipulated by an external electric field E the electrocaloric effect (ECE) could be observed. It describes the heating or cooling of an electrocaloric material triggered by adiabatically switching E on or off. In the paper we use the Landau-type mesoscopic approach to present minimal modelling revealing how material exhibiting continuous symmetry breaking discontinuous phase transition could be used for such purposes. We demonstrate how the phase transition temperature could be tuned to a desired value for systems described with i) vector, ii) tensor nematic, and iii) complex order parameter. In studying ECE we compare responses of systems which are coupled linearly and quadratic with E. Our modelling reveals parameters that dominantly influence the magnitude of ECE response. The results of our study could pave the way in discovering new tunable temperature isolating and high performance ECE materials.
Keywords: Thermal stabilization; Electro caloric effect; Cooling devices; Phase transitions; Order parameter (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218315470
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:162:y:2018:i:c:p:554-563
DOI: 10.1016/j.energy.2018.08.027
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().