Electricity power generation from co-gasification of municipal solid wastes and biomass: Generation and emission performance
Natarianto Indrawan,
Sunil Thapa,
Prakashbhai R. Bhoi,
Raymond L. Huhnke and
Ajay Kumar
Energy, 2018, vol. 162, issue C, 764-775
Abstract:
Global generation of municipal solid waste (MSW) is predicted to reach over 2.2 billion tons/year in 2025. Landfilling and incineration, the two most common conventional techniques for MSW processing, negatively impact public health. This study developed and demonstrated electricity generation by co-gasification of two underutilized resources: MSW and agricultural biomass. A patented design of 60-kW downdraft gasifier and an internal combustion engine with 10 kW generator were used to generate electricity from co-gasification of various ratios of MSW and biomass. The maximum heating values (LHV) of syngas obtained at MSW ratio of 0, 20, and 40 wt.% were 6.91, 7.74, and 6.78 MJ/Nm3, respectively. At all MSW to biomass ratios, the maximum electric load generated was 5 kW, with electrical efficiencies of 22, 20, and 19.5% at MSW ratios of 0, 20, and 40 wt.%, respectively. The engine CO, NOx, SO2, and CO2 emission decreased with increasing load, while HC emission increased with increasing load. CO, NOx, and CO2 emissions decreased, while HC and SO2 emissions increased with increase in MSW ratio. Thus, the co-gasification system provides a basis for future development of small-scale power generation to utilize local wastes.
Keywords: Co-gasification; MSW; Power generation; Engine emissions; Switchgrass; Waste-to-energy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421831466X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:162:y:2018:i:c:p:764-775
DOI: 10.1016/j.energy.2018.07.169
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().