EconPapers    
Economics at your fingertips  
 

2D modeling of well array operating enhanced geothermal system

Junfeng Ding and Shimin Wang

Energy, 2018, vol. 162, issue C, 918-932

Abstract: In this paper, the concept of well array operating enhanced geothermal system (EGS) is proposed in response to the existing challenges in EGS commercialization. A well array operating EGS is characterized by well sharing, which substantially reduces drilling cost and maximizes mass flow rate. Following a thorough discussion of conditions for representing an EGS by a 2D model, the life time performance of a well array operating EGS is investigated based on 2D finite element modeling. The accuracy of the presented numerical results is quantified by systematic tests of mesh, element order and time step dependence, and by direct comparison with an analytical solution for 2D porous flow, which is derived in the paper as well. This paper demonstrates that 2D modeling is not only capable of accurately solving a wide range of EGS problems at low computational cost, but also a powerful tool for quantitatively estimating 3D numerical modeling errors, which are usually not adequately addressed in previous studies. The modeling results of the well array operating EGS presented in this paper may serve as a benchmark for testing future EGS models.

Keywords: Enhanced geothermal system (EGS); Well array; Finite element modeling; Mesh dependence test; Time step dependence test; Analytical solution (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218315937
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:162:y:2018:i:c:p:918-932

DOI: 10.1016/j.energy.2018.08.061

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:918-932