Effect of different operating strategies for a SOFC-GT hybrid system equipped with anode and cathode ejectors
Jinwei Chen,
Yao Chen,
Huisheng Zhang and
Shilie Weng
Energy, 2018, vol. 163, issue C, 1-14
Abstract:
Ejector technology is introduced to perform the anode and cathode recirculation loops with low maintenance costs and high reliability. Four different operating strategies were designed for the novel solid oxide fuel cell-gas turbine hybrid system with anode and cathode ejectors to keep high efficiency and safety at a part-load operating condition. The part-load characteristics under different operating strategies were compared according to the simulation results. The comparison results show that the operating strategy has great effect on the part-load performance of the hybrid system with anode and cathode ejectors. Maintaining the SOFC operating temperature with variable speed operation has a great significance on the system efficiency. Moreover, fuel utilization, turbine inlet temperature, fuel cell temperature should be controlled and monitored to guarantee safely operating. Specifically, a concept of monitoring the temperature difference between anode and cathode channel is proposed. It can effectively avoid huge fuel cell temperature differences and compressor surge. Therefore, case 4 is an effective and appropriate operating strategy, which adjusts the primary fuel flow rate of SOFC, rotational speed, assistant fuel flow rate, compressor/turbine bypass flow rate to maintain turbine inlet temperature and temperature differences between anode and cathode.
Keywords: Solid oxide fuel cell; Gas turbine; Anode and cathode ejectors; Operating strategy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218315524
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:163:y:2018:i:c:p:1-14
DOI: 10.1016/j.energy.2018.08.032
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().