EconPapers    
Economics at your fingertips  
 

A gas ejector for CO2 supercritical cycles

Michal Palacz, Michal Haida, Jacek Smolka, Marcin Plis, Andrzej J. Nowak and Krzysztof Banasiak

Energy, 2018, vol. 163, issue C, 1207-1216

Abstract: The CO2 ejectors are recently often used as the main expansion device in the modern refrigeration cycles. On the other hand, according to the newest literature the implementation the ejectors into supercritical CO2 power cycles increase its performance. The recent studies showed that in case of the power cycles the ejector pressure lift and mass entrainment ratio are relatively high. Therefore, the main scope of this paper is the investigation of the possibilities of designing the ejector for supercritical Brayton CO2 system. The CFD based computational tool was used to design the ejector for the considered cycle. The system analysis was used to define the ejector on design point. The results of that analysis showed that the required pressure lift and must be equal to 103 bar and mass entrainment ratio equal to 0.995, respectively. The CFD-based evaluation of the proposed ejector showed that these values are impossible to achieve. Therefore, the modifications of the crucial ejector dimensions was performed to increase its performance. Nevertheless, the maximum possible pressure lift for the proposed ejector was equal to 60 bar The analysis of the gathered results showed that the design of the ejector fulfilling the system requirements may be impossible to achieve.

Keywords: R744 ejector; Supercritical CO2; CO2 brayton cycle; Thermal performance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218317900
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:163:y:2018:i:c:p:1207-1216

DOI: 10.1016/j.energy.2018.09.030

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:1207-1216