EconPapers    
Economics at your fingertips  
 

Ultrasound intensified CO2 desorption from pressurized loaded monoethanolamine solutions. I. parameters investigation and modelling

Jiru Ying, Dag A. Eimer, Frode Brakstad and Hans Aksel Haugen

Energy, 2018, vol. 163, issue C, 168-179

Abstract: CO2 stripping from loaded monoethanolamine (MEA) aqueous solutions intensified by means of ultrasound was investigated in a lab-scale kettle reboiler with both gas and liquid continuous operations. The reboiler operating conditions were similar to those of a typical industrial reboiler with a pressure of 1 barg, and where the CO2 loading is less than 0.25 mol CO2/mol MEA. Intermittent ultrasound application was tested to find the effects of variables for CO2 stripping from the CO2 loadings 0.20–0.39 mol/mol at pressures up to 1.5 barg. Multi-variate data analysis was employed, and a model was built to explain and find the effects of six variables on CO2 stripping by ultrasound. The six variables include pressure, liquid flow rate, CO2 loading, intensity, frequency and on-stream time of ultrasound. The variable analysis results manifest that the CO2 loading is the significant positive effect variable, pressure is negative on energy saving and CO2 stripping rate and ultrasound parameters have varied effects. Experimental results show that the CO2 stripping rate assisted by ultrasound is 4 times than by heat only when CO2 loading is high, and the best result of specific energy consumption was 2.3 MJ/kg CO2 in the present test conditions.

Keywords: Ultrasound; CO2 desorption; Loaded MEA aq. solution; Specific energy consumption; CO2 stripping rate; Lab-scale kettle reboiler (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421831658X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:163:y:2018:i:c:p:168-179

DOI: 10.1016/j.energy.2018.08.122

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:168-179