Investigation on a solar thermal power and ejector-absorption refrigeration system based on first and second law analyses
Abdul Khaliq,
Rajesh Kumar and
Esmail M.A. Mokheimer
Energy, 2018, vol. 164, issue C, 1030-1043
Abstract:
The energetic and exergetic performance of a solar thermal power and ejector-absorption refrigeration system is investigated. R141b, R600a, R290, R717 and R143a were employed as the working fluids for ORC and NH3-LiNO3 was utilized in the ejector-absorption cycle for cooling production. The energetic and exergetic output of PTC driven combined power and refrigeration cycle were evaluated along with the calculation of thermodynamic irreversibility. The distribution of solar exergy input to the cycle in term of exergy produced, destroyed due to irreversibility, and loss due to thermal exhaust to the ambient was computed and compared with the traditional energy distribution. The maximum exergy was destroyed in the PTC where it amounts to 79.61% of the overall exergy destruction. The conversion of solar exergy input to the cycle exergy output was best (14.6%) for R141b fluid and worst (3.9%) for R143a fluid. Parametric analysis of the results reveals that Solar beam radiation (SBR), turbine inlet pressure (TIP), ORC pump inlet temperature, heat transfer fluid (HTF) temperature at the inlet of PTC, and the selection of ORC working fluid have the significant effect on the energetic and exergetic outputs of solar thermal power and ejector-absorption cooling system.
Keywords: Ejector; Vapor absorption cycle; NH3-LiNO3; Parabolic trough collector; Organic rankine cycle (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218318139
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:164:y:2018:i:c:p:1030-1043
DOI: 10.1016/j.energy.2018.09.049
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().