EconPapers    
Economics at your fingertips  
 

Modelling of an adsorption chiller with adsorbent-coated heat exchangers: Feasibility of a polymer-water adsorption chiller

Dong-Seon Kim, Young-Soo Chang and Dae-Young Lee

Energy, 2018, vol. 164, issue C, 1044-1061

Abstract: An analytical model is developed for an adsorption chiller with adsorbent-coated heat exchangers, where adsorbent is deposited on heat exchanger surface in thin film to improve heat and mass transfer characteristics. Approximate solutions are obtained from the simplified governing equations for the heat exchanger and then used to predict performance of the chiller. The analytical model provides the heat and mass fluxes in the system in explicit functions of a few dimensionless numbers including Nt, Ja, γ and Cr. The analytical model is validated via comparison with a two-dimensional numerical model in wide ranges of design and operating parameters. The maximum discrepancy is found ca. 13% in SCP and 0.02 point in COP. Performance of the chiller is discussed regarding the influences of various design and operating parameters. Some experimental results are also analyzed with the analytical model and the results are discussed focusing on the performance of polymer-coated heat exchangers.

Keywords: Polymer; Desiccant; Adsorption; Chiller; Numerical model; Analytical model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218318012
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:164:y:2018:i:c:p:1044-1061

DOI: 10.1016/j.energy.2018.09.041

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:164:y:2018:i:c:p:1044-1061