EconPapers    
Economics at your fingertips  
 

Design of cylindrical mixing chamber ejector according to performance analyses

Wei Lu and Hongjie Chen

Energy, 2018, vol. 164, issue C, 594-601

Abstract: A design method for cylindrical mixing chamber ejector according to performance analyses is proposed based on the real gas properties. Compared with the experimental data, the entrainment ratio and critical back pressure calculated by the proposed method have errors within ±17% and ±6%, respectively. Ejectors with common characteristic sizes using steam, ammonia, R290 and R134a as working fluids are analyzed by this method. Consequently, design curves and regressive expressions are provided to describe the relations between entrainment ratios, ejector area ratios and expansion and compression ratios, as well as the relations between nozzle area ratios and expansion ratios. The expressions of nozzle throat areas are regressed for steam ejectors at 75–130 °C, as well as for ammonia, R290 and R134a ejectors at 75–95 °C. The design curves and regressive expressions provided by this paper can be used to design ejectors with cylindrical mixing chamber accurately and conveniently.

Keywords: Ejector; Analysis; Design; Fluid dynamics; Real gas properties (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218317857
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:164:y:2018:i:c:p:594-601

DOI: 10.1016/j.energy.2018.09.025

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:164:y:2018:i:c:p:594-601