Energy centric selection of machining conditions for minimum cost
Vincent Aizebeoje Balogun,
Isuamfon F. Edem,
Heng Gu and
Paul Tarisai Mativenga
Energy, 2018, vol. 164, issue C, 655-663
Abstract:
In the past, the cutting conditions that meet the economic and environmental objectives of the specified manufacturing process were selected based on minimum tooling cost and/or minimum electrical energy criterion. However, detailed modelling of electrical energy based on tool life and cost criterion has not been addressed. In this study, machining tests were conducted to develop a cost model which includes machining energy, and to assess the impact of the extended tool life model with regards to selection of cutting conditions, electricity cost and tool wear effect that satisfy these objectives. The model was validated with an industrial case study. Results show that cost savings at minimum energy were achieved. Hence, substantial cost savings could be achieved by selecting optimized machining parameters which could reduce machining costs by 47% compared to using tool supplier recommended feeds, depth of cut and cutting velocity. Thus, cost could be optimized fairly accurately without explicitly modelling energy demand due to the relative low contribution of energy costs compared to tooling costs. The optimized energy costs leads to minimum associated carbon footprint and reduces overall product cost. This creates an incentive for manufacturing companies to investigate the sustainability and energy efficiency of their manufacturing processes.
Keywords: Sustainable machining; Machining cost; Modelling; Energy efficiency (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218317808
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:164:y:2018:i:c:p:655-663
DOI: 10.1016/j.energy.2018.09.020
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().