Integrated supermarket refrigeration for very high ambient temperature
Nilesh Purohit,
Vishaldeep Sharma,
Samer Sawalha,
Brian Fricke,
Rodrigo Llopis and
Mani Sankar Dasgupta
Energy, 2018, vol. 165, issue PA, 572-590
Abstract:
This paper analytically investigates and compares the performance of a proposed ‘all-natural’ NH3/CO2 cascaded booster system to a conventional R404A direct expansion system as well as to an ‘all-CO2’ system with multi-ejector unit and flooded evaporator. Performance comparison is made based on the annual combined COP and Life Cycle Climate Performance (LCCP) for operation in selected cities of Middle East and India. Our results show that in extreme warm climate, the energy efficiency of the proposed configuration exceeds that of all-CO2 configuration by a maximum of about 12.23% and the total emissions are lower by up to 11.20%. However, the all-CO2 multi ejector system performs better in cold and mild warm climate. In the NH3/CO2 cascade, the high temperature NH3 system can be designed to be isolated from the accessible locations of the supermarket. The work presented is expected to help adoption of natural refrigerants such as CO2 and NH3 for commercial application in extreme warm climate conditions prevailing in many cities of Middle East and India.
Keywords: CO2; NH3/CO2 cascade; Supermarket; Integrated; Natural; Warm climate (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218318619
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:165:y:2018:i:pa:p:572-590
DOI: 10.1016/j.energy.2018.09.097
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().