Passive design optimization of low energy buildings in different climates
Fatima Harkouss,
Farouk Fardoun and
Pascal Henry Biwole
Energy, 2018, vol. 165, issue PA, 591-613
Abstract:
Worldwide, the residential buildings are consuming a considerable amount of energy. The high potential of buildings towards energy efficiency has drawn special attention to the passive design parameters. A comprehensive study on optimal passive design for residential buildings is presented in this paper. Twenty-five different climates are simulated with the aim to produce best practices to reduce building energy demands (for cooling and heating) in addition to the life-cycle cost (LCC). The occupants' adaptive thermal comfort is also improved by implementing the appropriate passive cooling strategies such as blinds and natural ventilation. In this respect, the implemented methodology is composed of four phases: building energy simulation, optimization, Multi-criteria Decision Making (MCDM), sensitivity study, and finally an adaptive comfort analysis. An optimal passive solution of the studied building indicates the potential to save up to 54%, 87% and 52% of the cooling demands (Qcool), heating demands (Qheat) and LCC respectively with respect to the initial configuration. The obtained optimal passive parameters are validated with the National Renewable Energy Laboratory NREL benchmark for low energy building's envelope. Additionally, the integrated passive cooling strategies have demonstrated its competency since it leads to a significant overheating decrease.
Keywords: Building envelope; Passive cooling strategies; Optimization; Decision making; Climate; Life cycle cost; Adaptive thermal comfort (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (55)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218317791
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:165:y:2018:i:pa:p:591-613
DOI: 10.1016/j.energy.2018.09.019
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().