Battery life-cycle optimization and runtime control for commercial buildings demand side management: A New York City case study
Yubo Wang,
Zhen Song,
Valerio De Angelis and
Sanjeev Srivastava
Energy, 2018, vol. 165, issue PA, 782-791
Abstract:
In metropolitan areas populated with commercial buildings, electric power supply is stringent especially during business hours. Demand side management using battery is a promising solution to mitigate peak demands, however long payback time creates barriers for large scale adoption. In this paper, we have developed a design phase battery life-cycle cost assessment tool and a runtime controller for the building owners, taking into account the degradation of battery. In the design phase, perfect knowledge on building load profile is assumed to estimate ideal payback time. In runtime, stochastic programming and load predictions are applied to address the uncertainties in loads for producing optimal battery operation. For validation, we have performed numerical experiments using the real-life tariff model serves New York City, Zn/MnO2 battery, and state-of-the-art building simulation tool. Experimental results shows a small gap between design phase assessment and runtime control. To further examine the proposed methods, we have applied the same tariff model and performed numerical experiments on nine weather zones and three types of commercial buildings. On contrary to the common practice of shallow discharging battery for preventing phenomenal degradation, experimental results show promising payback time achieved by optimally deep discharge a battery.
Keywords: Battery integration; Commercial building; Demand side management; Stochastic programming (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218318814
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:165:y:2018:i:pa:p:782-791
DOI: 10.1016/j.energy.2018.09.117
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().