Assessment of diesel engine performance using spirulina microalgae biodiesel
Upendra Rajak,
Prerana Nashine and
Tikendra Nath Verma
Energy, 2019, vol. 166, issue C, 1025-1036
Abstract:
The present work encompasses combustion, performance, and emission parameters of experimental investigations of a single cylinder, four stroke, water cooled, direct injection (DI), naturally aspirated compression ignition (CI) engine with a rated power output of 3.7 kW at constant engine speed (1500 rpm) using diesel and different blends of microalgae spirulina. The microalgae spirulina blend of ratio with diesel (BYY) where YY indicates blending percentage (0%, 20%, 40%, 60%, 80%, and 100% volume basis with diesel respectively) with different engine loading condition (25%, 50%, 75% and 100%) were compared with diesel at CR17.5:1. The output illustrates that the most optimum value is B20% when compared with diesel. The result depicts firstly that there is a reduction in brake thermal efficiency by 0.98%, exhaust gas temperature by 1.7%, hydrocarbon (HC) by 16.3%, carbon monoxide (CO) by 3.6%, NOX emission by of 6.8%, and smoke emission by 12.35% respectively. Secondly, there is an increase in specific fuel consumption by up to 5.2% and CO2 emission by 2.8% for spirulina blend ratio (B20%) as compared to diesel (B0%) at full load condition engine with constant engine speed.
Keywords: Spirulina; Biodiesel; Fuel properties; Engine characteristics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218320887
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:166:y:2019:i:c:p:1025-1036
DOI: 10.1016/j.energy.2018.10.098
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().