EconPapers    
Economics at your fingertips  
 

A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning

Qinge Xiao, Congbo Li, Ying Tang, Lingling Li and Li Li

Energy, 2019, vol. 166, issue C, 142-156

Abstract: Selection of optimum process parameters is often regarded as an effective strategy for improving energy efficiency during computer numerical control (CNC) turning. Previous optimization methods are typically developed for specific machining configurations. To generalize the energy-aware parametric optimization for multiple machining configurations, we propose a two-stage knowledge-driven method by integrating data mining (DM) techniques and fuzzy logic theory. In the first stage, a modified association rule mining algorithm is developed to discover empirical knowledge, based on which a fuzzy inference engine is established to achieve preliminary optimization. In the second stage, with the knowledge obtained by investigating the effects of parameters on specific energy consumption covering a variety of configurations, an iterative fine-tuning is carried out to realize Pareto-optimization of turning parameters for minimizing specific energy consumption and processing time. The simulation results show that the method has a high potential for enhancing energy efficiency and time efficiency in turning system. Furthermore, compared with three heuristic optimization techniques, i.e. Genetic Algorithm, Ant Colony Algorithm and Particle Swarm Algorithm, the proposed method demonstrates certain superiority.

Keywords: Parameter optimization; Turning process; Energy efficiency; Knowledge-driven method (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218319698
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:166:y:2019:i:c:p:142-156

DOI: 10.1016/j.energy.2018.09.191

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:142-156