EconPapers    
Economics at your fingertips  
 

Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India

Fabio Riva, Francesco Gardumi, Annalisa Tognollo and Emanuela Colombo

Energy, 2019, vol. 166, issue C, 32-46

Abstract: Rural electricity plans are usually designed by relying on top-down rough and aggregated estimations of the electricity demand, which may fail to capture the real dynamics of local contexts. This study aims at soft-linking a bottom-up approach for short- and long-term forecasts of load profiles with an energy optimisation model in a more comprehensive rural energy planning procedure. The procedure is applied to a small Indian community, and it is based on three blocks: (i) a bottom-up model to project households' electrical appliances, which adopts socio-economic indicators to make long-term projections; (ii) a stochastic load profile generator, which employs correlations and users’ habits for assessing the coincidence and load factors; (ii) an energy optimisation model based on OSeMOSYS to find the economic optimum. The simulations show that demand models based on socio-economic indicators lead to more structured and less arbitrary scenarios. The soft-link with the energy optimisation model confirms that when accounting for short- and long-term variabilities of electricity demand together, the optimal capacities and costs can vary up to 144% and 50% respectively. Integrating optimisation tools to bottom-up models based on socio-economic indicators for forecasting electricity demand is therefore pivotal to set more reliable investments plans in rural electrification.

Keywords: Rural electricity planning; Electricity demand model; Optimisation; Energy modelling; LoadProGen; OSeMOSYS (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218320577
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:166:y:2019:i:c:p:32-46

DOI: 10.1016/j.energy.2018.10.067

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:32-46