Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290
Hongxia Zhao,
Tianpeng Yuan,
Jia Gao,
Xinli Wang and
Jia Yan
Energy, 2019, vol. 166, issue C, 845-861
Abstract:
Both conventional and advanced exergy analysis methods were adopted to compare parallel and series compression-ejection hybrid refrigeration system for a two-temperature R290 refrigerator. The calculation was performed through Matlab and CoolProp. The results over typical design conditions showed that the exergy efficiency of the series system is 5.17% higher than the parallel system, and the exergy destructions of the compressor (30.59% for parallel and 31.22% for series) and the ejector (19.36% for parallel and 22.65% for series) are the biggest of the total system. Results from advanced exergy analysis showed that the compressor possesses highest improvement priority as its avoidable exergy destruction rate is the biggest, 42.76% of the total for parallel system and 41.28% for series system. The endogenous avoidable exergy destruction rates of the compressor and the ejector are larger than their exogenous parts in both systems, indicating it is most important to improve their own efficiency. However, the condenser’s endogenous avoidable exergy destruction rates are smaller than their exogenous part, so it is more effective by improving other system components rather than itself. The influence of the interactions among the components on the system performance was also evaluated based on their mexogenous exergy destruction.
Keywords: Advanced exergy analysis; Propane; Compression; Ejector; Refrigeration system; Two-temperature refrigerator (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218321315
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:166:y:2019:i:c:p:845-861
DOI: 10.1016/j.energy.2018.10.135
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().