Determination of random pore model parameters for underground coal gasification simulation
Sebastian Iwaszenko,
Natalia Howaniec and
Adam Smoliński
Energy, 2019, vol. 166, issue C, 972-978
Abstract:
Gasification technologies represent the most viable options of thermochemical processing of solid fuels. They are also characterized by lower emissions and higher efficiency when compared to conventional combustion systems. Particular attention has been paid to underground coal gasification offering the possibility of utilization for energy purposes coal resources otherwise inaccessible for economic or safety reasons. The disadvantage of this process is, however, the difficult control both in terms of technological and environmental aspects. The underground coal gasification process requires investigation of numerous heterogeneous reactions and transport processes, influenced by various process parameters, such as the temperature, type and flow rate of a gasification agent and geological conditions of the georeactor. In the paper a new, alternative way of the determination of kinetics of coal gasification by the Random Pore Model application is proposed. The procedure for determination of model parameters is presented. The structural parameter was estimated on the basis of measurements of char porous structure parameters. The reactivity measurements made for selected Polish coals were applied in determination of kinetic constants. The results of gasification process simulations for determined parameters and Random Pore Model are also given.
Keywords: Coal; Char; Gasification; Porous structure; Random pore model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218321534
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:166:y:2019:i:c:p:972-978
DOI: 10.1016/j.energy.2018.10.156
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().