EconPapers    
Economics at your fingertips  
 

Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050

Oliver Ruhnau, Sergej Bannik, Sydney Otten, Aaron Praktiknjo and Martin Robinius

Energy, 2019, vol. 166, issue C, 989-999

Abstract: Energy scenarios provide guidance to energy policy, not least by presenting decarbonisation pathways for climate change mitigation. We review such scenarios for the example of Germany 2050, with a focus on the decarbonisation of heat generation and road transport. In this context, we characterize the role of renewable electricity and contrast two rivalling narratives: direct and indirect electrification. On the one hand, electricity directly provides heat and transport, using electric heat pumps, electric heaters, and battery electric vehicles. On the other hand, electricity, heat, and transport are indirectly linked, using gas heat pumps, gas heaters, fuel cell electric vehicles, and internal combustion engine vehicles, in combination with power-to-gas and power-to-liquid processes. To reach climate policy targets, our findings imply that energy stakeholders must (1) plan for the significant additional demand for renewable electricity for heat and road transport, (2) pave the way for system-friendly direct heat electrification, (3) be aware of technological uncertainties in the transport sector, (4) clarify the vision for decarbonisation, particularly for road transport, and (5) use holistic and more comparable scenario frameworks.

Keywords: Energy transition; Energy scenarios; Electrification; Decarbonisation; Energy end-use (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218321042
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:166:y:2019:i:c:p:989-999

DOI: 10.1016/j.energy.2018.10.114

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:989-999