Fin-cooled photovoltaic module modeling – Performances mapping and electric efficiency assessment under real operating conditions
Diego Vittorini and
Roberto Cipollone
Energy, 2019, vol. 167, issue C, 159-167
Abstract:
The paper presents the modeling of a fin-cooled photovoltaic (PV) module, under real operating conditions. A full reconstruction of both the thermal behavior – transient energy balance, loss to the environment and module temperature - and the electrical dynamics for the system allows the efficiency gain assessment, associated with an increased heat exchange with ambient air. Various layouts are considered, in terms of fins mass and its effects on the heat capacity, fins amount and fins geometry. The model accounts for the PV module performances dependence on the (i) operating temperature and (ii) solar irradiance and integrates a section for continuous update of I-V PV characteristics, based on a standard five parameters model and the one-diode approximation. The merge between limit performances - as provided by the manufacturer – and evidences from an extensive experimental campaign for the in-field module characterization, allow a detailed reconstruction of the electric power associated with the module operation and prevent any bias in the model output. The potential of fins in module temperature control and electric efficiency enhancement is assessed and confirms the appeal of such a layout with respect to more consolidated cooling techniques.
Keywords: Photovoltaic-thermal module modeling; Fins cooling; Natural convection; Module operating temperature; Conversion efficiency; Transient energy balance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218321996
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:167:y:2019:i:c:p:159-167
DOI: 10.1016/j.energy.2018.11.001
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().