Performance enhancement of a plate methanol steam reformer by ribs installed in the reformer channel
Shiang-Wuu Perng,
Tsai-Chieh Chien,
Rong-Fang Horng and
Horng-Wen Wu
Energy, 2019, vol. 167, issue C, 588-601
Abstract:
The plate methanol steam reformer (PMSR) designed to enhance its performance is connected with proton exchange membrane fuel cells (PEMFC) considered as a bright future power source. The influences of height and width of transverse ribs, and heating temperature of PMSR were investigated on thermal flow fields, hydrogen yield, methanol conversion, and estimated cell net power of PEMFC. The outcomes show that only heating temperature of 250 °C can meet this requirement that the CO concentration lower than 10 ppm can sustain PEMFC operation, so the effect of transverse rib height and width is discussed at heating temperature of 250 °C. Compared to the traditional PMSR, a PMSR with the transverse ribs of 1.5 mm height and 4 mm width improves the conversion of methanol up to 19.58% and the hydrogen yield up to 57.23%. The PMSR installing the transverse ribs with 1.125 mm height and 4 mm width enhances the estimated cell net power output of a PEMFC up to 14.20%. The ribs installed in the reformer channel can effectively enhances the conversion of methanol and hydrogen yield of a PMSR and the estimated cell net power output of a PEMFC compared with the traditional PMSR.
Keywords: Plate methanol steam reformer; Transverse rib; Hydrogen yield; Estimated cell net power of PEMFC (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421832173X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:167:y:2019:i:c:p:588-601
DOI: 10.1016/j.energy.2018.10.176
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().