Concept of flexible vertical-axis wind turbine with numerical simulation and shape optimization
Ivo Marinić-Kragić,
Damir Vučina and
Zoran Milas
Energy, 2019, vol. 167, issue C, 841-852
Abstract:
Vertical-axis wind turbines (VAWT) are becoming popular solutions for electric power generation. Among them, Savonius-type VAWTs have low rotational speed, reduced noise and ability to self-start, but their disadvantage is the low energy conversion efficiency. This paper investigates a novel VAWT concept and whether it can provide a higher energy conversion efficiency. The novel concept is a Savonius-type VAWT with flexible blades that change their shape passively due to aerodynamic and blade inertial forces during rotation. An initial design was optimized by a customized shape optimization workflow based on genetic algorithms. The blade design evaluation was performed by CFD model with two-way fluid-structure interaction. The optimization objective was to determine the optimal blade shape, thickness distribution and location of the blade support arms by maximizing the power coefficient and keeping structural stresses below the design limit. The results show that 8% improvement of the power coefficient is possible while keeping the structural stress within the design limit. A detailed performance analysis in the paper shows that there is potential for further optimization considering annual energy production for a selected location. For that purpose, the proposed optimization workflow can serve as a tool for development of future designs.
Keywords: Vertical axis wind turbine; Savonius wind turbine; Shape optimization; Fluid structure interaction; B-spline (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218322308
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:167:y:2019:i:c:p:841-852
DOI: 10.1016/j.energy.2018.11.026
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().