EconPapers    
Economics at your fingertips  
 

Thermal energy storage of molten salt –based nanofluid containing nano-encapsulated metal alloy phase change materials

Nuria Navarrete, Rosa Mondragón, Dongsheng Wen, Maria Elena Navarro, Yulong Ding and J. Enrique Juliá

Energy, 2019, vol. 167, issue C, 912-920

Abstract: The availability of Thermal Energy Storage systems in Concentrated Solar Power plants makes them suitable to handle the gap between energy supply and power demand. Increasing the total thermal energy storage capacity of the Thermal Energy Storage materials used is of interest to improve their efficiency. In this work the thermal energy storage of the so called solar salt (60% NaNO3 - 40% KNO3) was improved by adding a phase change material composed of Al-Cu alloy nanoencapsulated with an aluminium oxide layer naturally formed when exposed to oxygen. The resistance of the oxide shell to thermal cycling up to 570 °C and its compatibility with the molten salt were proved. The specific heat and the total thermal energy storage were evaluated at different solid mass loads. Although the specific heat and thus the sensible heat storage decreases with solid content, the contribution of the phase change enthalpy and the latent heat storage can increase the total thermal energy storage up to a 17.8% at constant volume basis comparison. Besides, the thermal conductivity of the nanofluid was increased when adding the nanoparticles improving its heat transfer performance under some particular conditions.

Keywords: Thermal storage; Nanofluids; Phase change enthalpy; Specific heat; Thermal conductivity (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218322412
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:167:y:2019:i:c:p:912-920

DOI: 10.1016/j.energy.2018.11.037

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:912-920