EconPapers    
Economics at your fingertips  
 

Transient cooling and operational performance of the cryogenic part in reverse Brayton air refrigerator

Shanju Yang, Bao Fu, Yu Hou, Shuangtao Chen, Zhiguo Li and Shaojin Wang

Energy, 2019, vol. 167, issue C, 921-938

Abstract: Accurate calculation of the transient cooling performance is crucial for the operation and control of a reverse Brayton refrigerator. Components of the refrigerator have complex working characteristics individually and interact each other mutually. To solve the problem easily, the turboexpander matching characteristics were usually ignored and relations among components were simplified. In this study, a cryogenic reverse Brayton air refrigerator equipped with gas bearing turboexpander and plate-fin heat regenerator was presented. The ultimate refrigerating temperature was proposed through analysis. The transient cooling characteristics of the cryogenic part in refrigerator were resolved into the turboexpander matching performance and the regenerator transient cooling characteristics. The regenerator was simulated through numerical heat transfer and computational fluid dynamics by considering the axial conduction and cold loss. The matching model was improved by adopting a significant method of constant rotating speed. Using the dual non-steady time steps, a transient cooling model of the cryogenic part was explored via C++ code, and verified by experiment. Through the model, the refrigerator cooling performances were evaluated under different operation modes, and the energy utilization efficiency was determined. It can be used to evaluate the operation strategy of refrigerators and help to promote energy efficiency.

Keywords: Reverse Brayton air refrigerator; Transient cooling model; Dynamic matching; Regenerator; Experiment; Energy efficiency (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218322205
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:167:y:2019:i:c:p:921-938

DOI: 10.1016/j.energy.2018.11.016

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:921-938