Syngas production by chemical looping gasification using Fe supported on phosphogypsum compound oxygen carrier
Jie Yang,
Yi Wei,
Jing Yang,
Huaping Xiang,
Liping Ma,
Wei Zhang,
Lichun Wang,
Yuhui Peng and
Hongpan Liu
Energy, 2019, vol. 168, issue C, 126-135
Abstract:
Chemical looping gasification (CLG), which is a method for syngas production. The materials for the syngas are low-quality lignite and the industrial waste-phosphogypsum (PG). However, the reaction temperature for the process is high, which consumes a lot of energy. Therefore, in this work, a catalyst has been proposed to lower the reaction temperature in the CLG of syngas. Ellingham diagram has been used as a guide to find the catalyst. Furthermore, theoretical calculations using the thermodynamic software FactSage, have been conducted along with experiments to analyze the performance of compound oxygen carrier in the CLG process. After the analysis, it is suggested that the Fe supported PG has great characteristics with high oxygen carrying capacity, high selective conversion ability of C to CO, excellent activity and recyclability. In addition, compared with the PG applied used as oxygen carrier, the compound oxygen carrier has reduced the temperature to 1023 K with more than 90.00% carbon conversion, whereas more than 70.00% of carbon of lignite is transformed into CO. Additionally, the syngas has the cold gas efficiency of 81.38% and the lower heating value (LHV) 3222.52 kJ/Nm3. And, Fe promotes carbon conversion and syngas production mainly through the reactions: and .
Keywords: Chemical looping gasification (CLG); Syngas; Phosphogypsum; Fe; Thermodynamics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421832317X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:168:y:2019:i:c:p:126-135
DOI: 10.1016/j.energy.2018.11.106
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().