EconPapers    
Economics at your fingertips  
 

Multi-objective hydropower station operation using an improved cuckoo search algorithm

Xuejiao Meng, Jianxia Chang, Xuebin Wang and Yimin Wang

Energy, 2019, vol. 168, issue C, 425-439

Abstract: Efficient utilization of water resources in hydropower station operation is an important part of mitigating water and energy scarcity. Exploring efficient multi-objective optimization algorithms and studying the trade-off between water and energy have become the primary goal of multi-objective hydropower station optimal operation (MOHSOO). In this paper, a new improved multi-objective cuckoo search (IMOCS) algorithm is proposed to overcome the shortcomings of MOCS. Specifically, a population initialization strategy based on constraint transformation and the individual constraints and group constraints technique (ICGC) and a dynamic adaptive probability (DAP) are used to improve the search efficiency and the quality of solutions, respectively. A flock search strategy (FSS) is proposed to greatly speed up the convergence and improve the quality of the non-dominated solutions. In addition, the MOCS and NSGA-II are presented as a comparison to test the performance of IMOCS as well as three hybrids of MOCS combined with these strategies. An MOHSOO model of Xiaolangdi and Xixiayuan cascade hydropower stations in the lower Yellow River is built to verify the effectiveness of these algorithms together with five benchmark problems. The results show that IMOCS performs better than other algorithms in convergence speed, convergence property, and diversity of solutions. For the Xiaolangdi hydropower station, there is a strong competitive relationship between power generation and water supply from September to next February, which severely restricts the power generation of the hydropower station.

Keywords: Multi-objective hydropower station operation; Multi-objective cuckoo search; Fast non-dominated sorting; Search mechanism; Constraint transformation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218323077
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:168:y:2019:i:c:p:425-439

DOI: 10.1016/j.energy.2018.11.096

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:425-439