A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver
Sara Soltani,
Mohammad Bonyadi and
Vahid Madadi Avargani
Energy, 2019, vol. 168, issue C, 88-98
Abstract:
In solar energy conversion and utilization in a parabolic dish collector (PDC), the accurate modeling of the system and also the appropriate selection of adjustable operational parameters, are so important. In this work, a helically baffled cylindrical cavity receiver in a PDC system was studied experimentally and theoretically. For optical and thermal modeling of the system, a novel combining method was used. The real solar flux distribution on the receiver internal walls was obtained by using SolTrace software and then, the real fluxes were employed in ANSYS Fluent software to increase the accuracy of CFD modeling of the system. The model was verified and validated with the experimental data, and a good agreement was observed with a maximum deviation of about 2%. The effect of some geometrical and structural parameters such as receiver aperture distance to the focal point ratio, receiver aspect ratio and system geometrical concentration ratio and also, some operational parameters such as Heat Transfer Fluid (HTF) inlet temperature, mass flow rate and solar irradiation intensity on the thermal performance of the system were investigated. The results show that the optimal selection of the mentioned parameters can enhance the thermal performance of the system up to 65%.
Keywords: Solar dish collector; Cylindrical cavity receiver; Optical-thermal modeling; Operational and structural parameters; Thermal performance analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218323089
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:168:y:2019:i:c:p:88-98
DOI: 10.1016/j.energy.2018.11.097
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().