Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes
Hasan Mehrjerdi,
Mosayeb Bornapour,
Reza Hemmati and
Seyyed Mohammad Sadegh Ghiasi
Energy, 2019, vol. 168, issue C, 919-930
Abstract:
This paper presents a unified model for home energy management. The proposed model optimizes the cogeneration of wind, solar, and battery storage units. The introduced tool considers electric and hydrogen vehicles and provides optimal charging pattern for them. The water electrolyze is also modeled to produced breathable oxygen and hydrogen from water. As well, the load modeling options such as adjustable and interruptible loads are included in the planning in order to increase the flexibility and adeptness of the proposed energy management system. The uncertainties of wind and solar powers are included resulting in a stochastic programming. The proposed stochastic optimization problem is mathematically expressed as a mixed integer linear programming and solved by GAMS software. The problem minimizes cost of energy consumption in the building subject to the operational constraints of wind unit, solar panel, battery system, loads, electric-hydrogen vehicles, and electricity grid. The proposed test building is studied under two states including connected to the electrical grid and disconnected from the gird (i.e., islanding mode or NetZero energy home). The impacts of the proposed planning on the environmental pollution are also considered and simulated. The results verify that the proposed strategy can successfully utilize wind-solar-battery units to supply the load, charging the electric-hydrogen vehicles, and reduction of the pollution. As well, it is demonstrated that the operation of the home under islanding mode is completely different from the connected state.
Keywords: Electric vehicle; Home energy management; Hybrid wind solar battery; Hydrogen vehicle; Net zero energy home; Stochastic programming (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218323429
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:168:y:2019:i:c:p:919-930
DOI: 10.1016/j.energy.2018.11.131
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().