EconPapers    
Economics at your fingertips  
 

Super-knock suppression for highly turbocharged spark ignition engines using the fuel of propane or methanol

Hui Liu, Zhi Wang, Yunliang Qi, Xin He, Yingdi Wang and Jianxin Wang

Energy, 2019, vol. 169, issue C, 1112-1118

Abstract: Super-knock is the main obstacle to improve power density and fuel efficiency of highly boosted gasoline engines. Previous investigations show that pre-ignition and detonation are the two key combustion processes of super-knock. The former is the inducement and the latter is the root reason of how super-knock could damage engines dramatically. Lots of studies have been conducted for suppressing super-knock through eliminating pre-ignition. Using a rapid compression machine, this study explores the stoichiometric propane or methanol mixture to suppress super-knock by eliminating detonation. Under the same pressure at the end of compression, the same fuel energy density and the same charged fresh air, the peak pressure of propane mixture could be reduced dramatically and the pressure oscillation could be eliminated, when compared to iso-octane mixture. The combustion could be transferred from detonation to flame propagation. For methanol mixture, the combustion process could be transferred from detonation to weak auto-ignition with low peak pressure and negligible pressure oscillation. These indicate that both propane and methanol mixture could suppress detonation and thus suppress super-knock effectively, even if pre-ignition occurs. It could be an effective and practical control strategy to protect modern highly turbocharged spark ignition engines.

Keywords: Super-knock; Detonation; Propane; Methanol; Rapid compression machine (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218324241
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:169:y:2019:i:c:p:1112-1118

DOI: 10.1016/j.energy.2018.12.058

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:169:y:2019:i:c:p:1112-1118