Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes
K. Yu Vershinina,
N.E. Shlegel and
P.A. Strizhak
Energy, 2019, vol. 169, issue C, 18-28
Abstract:
This paper presents the results of an experimental study that explores the ignition and combustion of composite fuels based on wood processing and oil production wastes. By the example of a typical developed industrial region, it is shown how numerous of wood processing wastes (sawdust) and oil production wastes (sludge) may be effectively recovered. We study the main time characteristics (ignition delay and combustion duration) of fuel combustion, heat release, anthropogenic emissions. The values of relative efficiency (taking into account energy, environmental and economic indicators) of waste-derived composite fuels are defined in comparison with fuel oil and coal. The optimal concentration of components – 50% of sawdust, 25% of oil component, and 25% of water – allows the maximum efficiency of fuel combustion. In terms of minimizing the cost of ignition, the best is the mixture of 30% of sawdust and 70% of heavy oil. The research findings illustrate the great prospects for the large-scale involvement of numerous wastes in the fuel and energy cycle of any industrially developed region of the world.
Keywords: Wood waste; Petroleum waste; Waste recovery; Fuel slurry; Combustion; Emission reduction; Relative efficiency of fuel recovery (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218323934
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:169:y:2019:i:c:p:18-28
DOI: 10.1016/j.energy.2018.12.027
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().