All UK electricity supplied by wind and photovoltaics – The 30–30 rule
Aikaterini Fragaki,
Tom Markvart and
Georgios Laskos
Energy, 2019, vol. 169, issue C, 228-237
Abstract:
Based on weather and electricity demand data for the period 1984–2013, we develop a system model based on energy balance to determine the size of photovoltaic and wind generation combined with energy storage to provide a firm power supply for Great Britain. A simple graphical methodology is proposed where the required wind and PV generation capacities can be read off from a “system configuration diagram” as a function of the available storage size. We show, by way of illustration, that a reliable supply would be produced by a system based on PV and wind generators generating some 30% more electrical energy (approximately 100 TWh p.a.) than the current electricity supply system if supplemented with 30 days of storage. In terms of generation capacities, the current 82 GW of principally thermal generation would then be replaced by about 150 GW of wind turbines and 35 GW of PV arrays.
Keywords: Wind; Photovoltaics; Electricity demand; UK; Energy storage (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218323624
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:169:y:2019:i:c:p:228-237
DOI: 10.1016/j.energy.2018.11.151
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().