EconPapers    
Economics at your fingertips  
 

Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion

Nima Khakpoor, Ehsan Mostafavi, Nader Mahinpey and Hector De la Hoz Siegler

Energy, 2019, vol. 169, issue C, 329-337

Abstract: Reactivity and oxygen-transport capacity of Canadian and commercial ilmenite ores in the chemical-looping combustion of methane were investigated in a thermogravimetric analyzer (TGA). Oxygen carrier performance was evaluated over multiple cycles during which Canadian ilmenite oxygen transport capacity increased from 2.7% to 14.2% and the commercial sample maintained an approximately constant oxygen transport capacity at 4.5%. XRD and SEM results indicate that new phases were formed, and surface morphology was transformed significantly during cyclic operations. Studies on carbon deposition on the ilmenite surface indicate that lower methane partial pressure and reduction temperatures are favorable to effectively prevent this phenomenon. The kinetic grain model (GM) was found satisfactorily to fit reduction rate data obtained at atmospheric pressure. Intrinsic reaction rates and kinetic parameters were assessed, accordingly. Activation energy were estimated 106.7 ± 10.6 kJ/mol and 95.0 ± 8.5 kJ/mol for the Canadian and commercial samples, respectively.

Keywords: Chemical-looping combustion; CO2 capture; Grain model; Cyclic redox operation; Ilmenite (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218324228
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:169:y:2019:i:c:p:329-337

DOI: 10.1016/j.energy.2018.12.056

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:169:y:2019:i:c:p:329-337