High efficiency solar chemical-looping methane reforming with ceria in a fixed-bed reactor
Jesse R. Fosheim,
Brandon J. Hathaway and
Jane H. Davidson
Energy, 2019, vol. 169, issue C, 597-612
Abstract:
High efficiency solar chemical-looping methane reforming is demonstrated in a prototype reactor operated in a high-flux solar simulator. The reactor includes six tube assemblies, which each comprise a fixed-bed of ceria particles and a gas-phase heat recuperator. The cycle was accomplished by alternating the flow to one tube assembly between CH4 and CO2. In the initial series of experiments, temperature, CH4 concentration, reduction flow rate, and cycle duration were varied to minimize carbon accumulation and maximize efficiency. In the second set of tests, the reactor was operated at optimized conditions for ten cycles at 1228 and 1274 K. Higher temperature favors better performance. At 1274 K, CH4 conversion is 0.36, H2 selectivity is 0.90, CO selectivity is 0.82, CO2 conversion is 0.69, and the energetic upgrade factor is 1.10. Heat recovery effectiveness is over 95%. Solar-to-fuel efficiency is 7% and the thermal efficiency is 25%. Projected solar-to-fuel and thermal efficiencies are 31 and 67% for the full-scale reactor and 56 and 85% for a commercial reactor with lower thermal losses. The demonstrated efficiencies are the highest reported to-date for this process. The projected scaled-up efficiencies suggest solar chemical-looping methane reforming could be a competitive approach for production of solar fuels.
Keywords: Solar thermochemical; Chemical-looping; Reforming; Redox cycle; Metal oxide; Ceria (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218324034
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:169:y:2019:i:c:p:597-612
DOI: 10.1016/j.energy.2018.12.037
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().