A Layered Uncertainties Scenario Synthesizing (LUSS) model applied to evaluate multiple potential long-run outcomes for Iran's natural gas exports
Reza Hafezi,
AmirNaser Akhavan,
Saeed Pakseresht and
David A. Wood
Energy, 2019, vol. 169, issue C, 646-659
Abstract:
For decades, energy has prevailed as a critical policymaking concern at national and international levels. Today, energy systems, the global markets and their trends are more complex, and it is crucial for any nation or organization which seeks to grow its share in the energy markets to develop insights about potential future trends and changes. Although Iran has one the largest natural gas reserves in the world, it currently contributes little to international market supply and recently has targeted the enhancement of its role in the market. To achieve this, it must carefully consider the complexity of existing global energy markets and how they are likely to evolve in the future. Here, we develop and discuss a novel scenario synthesizing model to address the inherent uncertainty of the energy future. The model starts with a structured environmental analysis step to establish the meaningful driving forces and other influences on the natural gas global markets. The influences identified are then categorized under four classes: critical uncertainties, driving forces, descriptive, and neutral (which are removed from the study). Applying a simulation-based method, a layered scenario development model is constructed to develop plausible scenarios for two feature classes: critical uncertainties and driving forces. The developed scenarios are then combined to generate possible scenario streams. A third layer simulation is applied to generate final plausible scenarios. As a final step, scenarios are clustered to define relatively independent scenario streams, and each is discussed using descriptive features.
Keywords: Natural gas export; Scenario development; Scenario simulation; Global energy market; Iran (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218324599
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:169:y:2019:i:c:p:646-659
DOI: 10.1016/j.energy.2018.12.093
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().