EconPapers    
Economics at your fingertips  
 

Multi-level and multi-granularity energy efficiency diagnosis scheme for ethylene production process

Shixin Gong, Cheng Shao and Li Zhu

Energy, 2019, vol. 170, issue C, 1151-1169

Abstract: The overall energy efficiency level of ethylene production process not only is influenced by the input energy mediums and output products, but also closely dependent on the operation status of the internal phases in the process. Traditionally, the energy efficiency diagnosis strategies mostly regard the ethylene production process as a black box, and only care about the influence caused by input and output factors, regardless of the interactions effect resulted from the internal subprocess and equipment. Therefore, to improve the traditional energy efficiency diagnosis schemes and extract the potential energy-saving factors, the deep analysis of the internal operation phases is necessary. Considering the large-scale and multi-dimensional characters of ethylene production process, a multi-level and multi-granularity energy efficiency diagnosis scheme is proposed in this paper. First, based on the analysis of energy flow, the layer classification for diagnosis boundary is implemented and the key energy-consuming facilities are determined in ethylene production process. Then, the corresponding three-level energy efficiency indicator system is established for benchmarking the energy efficiency level. Finally, the hierarchical energy efficiency diagnosis models are constructed based on two-stage and network data envelopment analysis to study the internal operation phases and find out the energy-saving factors. A practical Chinese ethylene plant is used to demonstrate the effectiveness of the proposed scheme. Not only is the energy efficiency level evaluated, but also the specific reasons resulting in the low energy efficiency level are found out, which provides the suggestions for saving energy and improving energy efficiency to the decision makers.

Keywords: Energy efficiency; Hierarchical diagnosis; Layer classification; Network DEA; Ethylene production (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218325775
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:170:y:2019:i:c:p:1151-1169

DOI: 10.1016/j.energy.2018.12.203

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:1151-1169