Economics at your fingertips  

Effect of air recirculation and heat pump on mass transfer and energy parameters in drying of kiwifruit slices

Iman Mohammadi, Reza Tabatabaekoloor and Ali Motevali

Energy, 2019, vol. 170, issue C, 149-158

Abstract: The simultaneous transfer of mass and heat in the drying process has turned it into a complicated process with respect to mass transfer and moisture removal. A hot-air dryer equipped with an auxiliary heat pump and air recirculation system was used to dry kiwifruit slices at three different temperatures (45, 55 and 65 °C) to determine mass transfer and activation energy using two different models, namely Dincer-Dost and Crank's models. When the heat pump was on, compared with 45 °C and air recirculation rate (0%) at higher temperature (65 °C) and higher air recirculation rate (100%) the drying rate constant increased from 1.113 × 10−4 s−1 to 2.357 × 10−4 s−1and the effective moisture diffusion coefficient increased from 1.94 × 10−9 m2/s to 7.12 × 10−9 m2/s. When the heat pump was off, both parameters decreased with increasing recirculation (from 0 to 100%) and increased with rising the temperature (from 45 to 65 °C). When the heat pump was turn off and on, at 65 °C and 100% recirculation the change in the range of activation energy, convective mass transfer coefficient, specific energy consumption, drying efficiency and specific moisture extraction rate (SMER) were 14.04–20.39 kJ/mol, 4.12–8.55 × 10−7 m/s, 1.08–1.49 kWh/kg, 9.84–12.15% and 0.11–0.15 kg/kWh, respectively.

Keywords: Drying; Kiwifruit; Convective mass transfer coefficient; Effective moisture diffusion coefficient; Air recirculation (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2019-03-17
Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:149-158