Economics at your fingertips  

Numerical comparison study of methane catalytic combustion characteristic between newly proposed opposed counter-flow micro-combustor and the conventional ones

Yunfei Yan, Gange Wu, Weipeng Huang, Li Zhang, Lixian Li and Zhongqing Yang

Energy, 2019, vol. 170, issue C, 403-410

Abstract: Nowadays, combustion instability and low combustion efficiency are still two vital obstructions against the developments of microscale combustors. To handle and ease these two problems, a novel opposed counter-flow micro-combustor(C) with special multi-step separated baffles is proposed and compared with other two conventional micro-combustors (planar micro-combustor (A) and heat recirculation micro-combustor (B)). The catalytic combustion characteristics of CH4/air in three micro-combustors are numerically investigated using CFD software. Results show that with multi-step separated baffles, micro-combustor C shows superiority in improving combustion efficiency at high inlet velocity and extending the inlet velocity limits for stable combustion with lower flow velocity distributions and enhanced heat recirculation. At the inlet velocity of 1.1 m/s, the combustion efficiency and blow-off limit of the opposed counter-flow micro-combustor increase by 18.34% and 165% compared with the planar micro-combustor, respectively. A significant supplement of CH4 is discovered in combustor C from the gaps between the separated baffles and this is also a key point resulting in the high combustion efficiency of micro-combustor C. Besides, the new combustor also performs better in thermal cycling than normal heat recirculation micro-combustor with the preheat temperature deviation reaching 243 K at 1.1 m/s.

Keywords: Methane catalytic combustion; Heat recirculation; Opposed counter-flow; Micro-combustors; Multi-step separated baffles (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2019-03-17
Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:403-410