Experimental and kinetic study of diisobutylene isomers in laminar flames
Geyuan Yin,
Erjiang Hu,
Shihan Huang,
Jinfeng Ku,
Xiaojie Li,
Zhaohua Xu and
Zuohua Huang
Energy, 2019, vol. 170, issue C, 537-545
Abstract:
Laminar flame speeds of 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene were studied at initial temperatures of 298–453 K, the equivalence ratios of 0.8–1.6 and initial pressure of 0.1 MPa. The comparison between 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene was also performed in this work. Results show that 2,4,4-trimethyl-2-pentene has faster laminar flame speeds than 2,4,4-trimethyl-1-pentene. The Metcalfe model was validated and modified, and the Modified model can give fairly good prediction at various conditions on laminar flame speeds of both 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene. In addition, the chemical kinetic analysis was conducted. The analysis indicates that the discrepancy of laminar flame speeds between two isomers mainly depends on the kinetic effects with the same adiabatic flame temperature. Furthermore, the kinetic analysis show that IC4H8 and DMPD13 are dominant intermediates of 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene, respectively. The transformation between IC4H8 and IC4H7 consumes various active radicals and has strong negative effect on the global activity, which results in lower mole fraction of H radical of 2,4,4-trimethyl-1-pentene compared with 2,4,4-trimethyl-2-pentene. Therefore, the latter has higher laminar flame speeds than the former. Sensitivity analysis showed that both of them are sensitive to small radical reactions. Besides, 2,4,4-trimethyl-1-pentene is sensitive to isobutene related reactions and 2,4,4-trimethyl-2-pentene is sensitive to DMPD13 related reactions.
Keywords: 2,4,4-Trimethyl-1-pentene; 2,4,4-Trimethyl-2-pentene; Laminar flame speeds; Chemical kinetic model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218325684
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:170:y:2019:i:c:p:537-545
DOI: 10.1016/j.energy.2018.12.194
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().