Experimental investigation on a fresh air dehumidification system using heat pump with desiccant coated heat exchanger
Shaowei Chai,
Xiangyu Sun,
Yao Zhao and
Yanjun Dai
Energy, 2019, vol. 171, issue C, 306-314
Abstract:
With the increasing attention to indoor air quality (IAQ), the use of fresh air conditioning systems has become more widespread in recent years. However, the dew point dehumidification method of conventional air conditioning system results in high energy consumption because the temperature of the air needs to be reduced below the dew point temperature. In this research, a fresh air dehumidification system using heat pump with desiccant coated heat exchanger (DCHE) is presented and experimentally tested. The harmful effect of adsorption heat could be overcome and the efficiency of dehumidification could be improved due to the application of DCHE. Base on the experimental results, it can be noticed that maximum moisture removal 9.98 g/kgDA could be achieved on high humidity condition and the coefficient of performance of the heat pump system can reach 5.36. In addition, the system is more efficient for handling humid air with high relative humidity. Besides, energy saving ratio of the system is studied compared with conventional dew point dehumidification and the maximum energy saving ratio is 74.4% at the experimental condition.
Keywords: Fresh air dehumidification; Heat pump; Desiccant coated heat exchanger; Performance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219300258
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:171:y:2019:i:c:p:306-314
DOI: 10.1016/j.energy.2019.01.023
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().