EconPapers    
Economics at your fingertips  
 

Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs

S. Launay, B. Kadoch, O. Le Métayer and C. Parrado

Energy, 2019, vol. 171, issue C, 419-434

Abstract: As energetic systems become more and more complex, it is necessary to develop strategies for analyzing the influence of the parameters as well as their couplings. This approach is even unavoidable when the optimization procedure is based on multi-criteria. In the present work, we propose an analysis strategy for multi-criteria optimization applied to inter-seasonal solar heat storage for residential building energy needs, including heating and domestic hot water. The modeling is based on simplified equations of the components, while keeping the main physical and coupling phenomena. A sensitivity study is applied to the corresponding energetic system in order to identify the most relevant parameters and couplings interacting on the various output objectives. Several simulations are performed to investigate a multi-objective optimization and various figure representations are presented to refine the analysis.

Keywords: Inter-seasonal thermal energy storage; Solar district heating; Multi-objective optimization; Sensitivity analysis; Renewable energy (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218325556
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:171:y:2019:i:c:p:419-434

DOI: 10.1016/j.energy.2018.12.181

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:419-434