EconPapers    
Economics at your fingertips  
 

Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors

Meng Han, Lili Ding, Xin Zhao and Wanglin Kang

Energy, 2019, vol. 171, issue C, 69-76

Abstract: In this study, the hybrid of combination-mixed data sampling regression model and back propagation neural network (combination-MIDAS-BP) is proposed to perform real-time forecasting of weekly carbon prices in China's Shenzhen carbon market. In addition to daily energy, economy and weather conditions, environmental factor is introduced into predictive indicators. The empirical results show that the carbon price is more sensitive to coal, temperature and AQI (air quality index) than to other factors. It is also shown that the forecast accuracy of the proposed model is approximately 30% and 40% higher than that of combination-MIDAS models and benchmark models, respectively. Given these forecast results, China's government and enterprises can effectively manage nonlinear, nonstationary, and irregular carbon prices, providing a better investing and managing tool from behavioural economics.

Keywords: Carbon price; MIDAS regression; Forecast combination; BP neuron network (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (52)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219300118
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:171:y:2019:i:c:p:69-76

DOI: 10.1016/j.energy.2019.01.009

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:69-76