EconPapers    
Economics at your fingertips  
 

Numerically investigation of ignition process in a premixed methane-air swirl configuration

Masoud EidiAttarZade, Sadegh Tabejamaat, Mahmoud Mani and Mohammad Farshchi

Energy, 2019, vol. 171, issue C, 830-841

Abstract: Ignition process in a premixed methane-air swirl configuration is studied using a large eddy simulation method with Smagorinsky sub-grid scale model. A developed thickened flame combustion approach with two-step methane-air mechanism is used. Non-reacting mean and RMS axial, tangential and radial velocity profiles are validated against the experimental results. It is shown that the flow field consists of four zones: Inner Recirculation Zone, Inner Shear Layer, Outer Shear Layer and Corner Recirculation Zone. The mean and RMS of velocities and temperature in reacting flow are then validated against the experimental data. Large eddy simulation is used to investigate the ignition sequence by sparking in the four zones in the flow field. Flame growth, propagation and stabilization are studied for these cases. Results show that sparking in IRZ has the fastest flame growth and takes the minimum time to reach flame stabilization. Propagating flame surface in all cases has sharp flame edges, without any hysteresis for flame position. Finally, flame structures are analyzed by flame curvature and the effect of flow field velocity on the flame surface.

Keywords: Ignition; Large eddy simulation; Swirl; Numerical combustion; Thickened flame model (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219300052
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:171:y:2019:i:c:p:830-841

DOI: 10.1016/j.energy.2019.01.005

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:830-841