EconPapers    
Economics at your fingertips  
 

Advanced analysis of various effects of water on natural gas HCCI combustion, emissions and chemical procedure using artificial inert species

Mehrdad Farajzadeh Ahari and Elaheh Neshat

Energy, 2019, vol. 171, issue C, 842-852

Abstract: The aim of current study is to investigate the effects of water addition on natural gas HCCI combustion. For this purpose, a thermodynamic multi-zone model coupled to a semi-detailed chemical kinetics mechanism, containing 53 species and 325 reactions, is used. First, the validation of the multi-zone model is carried out for four different operating modes. Then, five different amounts of water are added to the fuel and its effect on natural gas combustion is investigated. The method of adding water to the in-cylinder charge is such that the total amount of mass inside the combustion chamber and the overall air-fuel ratio are constant. Also, Chemical, dilution and thermal effects of water are studied using artificial inert species method. The results indicate that addition of water retards the start of combustion and decreases peak values of in-cylinder pressure and heat release rate. Adding of water up to about 3% increases the engine thermal efficiency and decreases exhaust emissions. It is reveal that the thermal effect of adding water on start of combustion and emissions formation is more significant than its dilution and chemical effects. Water addition, similar to other additives, may help to control the combustion process of a HCCI engine.

Keywords: HCCI combustion; Natural gas; Water addition; Artificial inert species (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219300611
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:171:y:2019:i:c:p:842-852

DOI: 10.1016/j.energy.2019.01.059

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:842-852