EconPapers    
Economics at your fingertips  
 

Performance analysis and carbon reduction assessment of an integrated syngas purification process for the co-production of hydrogen and power in an integrated gasification combined cycle plant

Woo-Sung Lee, Hyun-Taek Oh, Jae-Cheol Lee, Min Oh and Chang-Ha Lee

Energy, 2019, vol. 171, issue C, 910-927

Abstract: The integrated gasification combined cycle (IGCC) is prominent in coal-based power plants because of its high efficiency and environmental benefit. Because of global warming, the integration of a carbon capture process (CCP) into the IGCC is exigent. In this study, performance analysis of an integrated syngas purification process was performed for a 500 MW-class IGCC. First, various carbon capture efficiencies were investigated to elucidate the most economical carbon capture efficiency, and a carbon capture efficiency of 90% was recommended. This value includes sour gas (H2S) removal cost, and it is essential for coal-power plants regardless of carbon capture. Thus, the net carbon capture cost was calculated from the difference in the operating costs of the integrated syngas purification process with/without a CCP. The net carbon capture cost per ton of CO2 was determined as approximately 21 USD. In addition, the exergy analysis and H2 co-production from the integrated syngas purification process with pressure swing adsorption (PSA) were presented to suggest the direction of the potential process improvement and carbon reduction assessment. The study can contribute towards decision-making related to investment in near-future candidate technologies for increasing efficiency and carbon emissions.

Keywords: IGCC; Net carbon capture cost; Exergy analysis; Hydrogen production; Carbon reduction assessment (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219300714
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:171:y:2019:i:c:p:910-927

DOI: 10.1016/j.energy.2019.01.069

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:910-927