EconPapers    
Economics at your fingertips  
 

Exergy and cost analyses of waste heat recovery from furnace cement slag for clean hydrogen production

H. Ishaq, I. Dincer and G.F. Naterer

Energy, 2019, vol. 172, issue C, 1243-1253

Abstract: This paper examines the performance and viability of a cement slag waste heat recovery system combined with a thermochemical copper-chlorine cycle for hydrogen production combined with hydrogen compression and a reheat Rankine cycle. The waste heat from the cement slag is recovered as a heat source for high-temperature reactions in the copper-chlorine cycle. The clean hydrogen production from waste heat recovery is examined with respect to both energy and exergy efficiencies. The integrated system is simulated and modeled in Aspen Plus. The multigeneration system utilizes the industrial waste heat and significantly reduces operating costs from the waste heat recovery. The overall energy efficiency of the integrated system is obtained as 32.5% while the corresponding exergy efficiency becomes 31.8%.

Keywords: Hydrogen energy; Cu-Cl cycle; Heat recovery; Energy; Exergy; Efficiency (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219302154
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:172:y:2019:i:c:p:1243-1253

DOI: 10.1016/j.energy.2019.02.026

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1243-1253