Simulation and analysis of vane-blade interaction in a two-stage high-pressure axial turbine
Kaddour Touil and
Adel Ghenaiet
Energy, 2019, vol. 172, issue C, 1291-1311
Abstract:
The characterization of aerothermodynamic performance and components interactions are of great importance to improve the design of multi-stage axial turbines. The steady and unsteady flow simulations were carried out to investigate the performance maps and the vane-rotor interaction in a two-stage high-pressure (hp) axial turbine. The obtained results show that the expansion properties are controlled mainly by the first stage nozzle guide vane (NGV). Besides, the aerodynamic characteristics of the second stage vanes and blades are affected by the impingements of wakes from upstream stage, hence lesser isentropic efficiency compared with an isolated stage. Moreover, the secondary flows, tip leakage flow and vortices emanating from the first rotor are convected downstream, thereby inducing considerable flow deviations and losses. The clocking of vane/blade rows has revealed variations in aerodynamic loading and isentropic efficiency. Indeed, the maximum isentropic efficiency clocking position corresponds to upstream wakes close to the leading edge of second stage vanes, while the minimum efficiency clocking position corresponds to wakes passing midway. The unsteady flow computations and FFT analysis revealed different modes of components interaction identified in terms of the passing frequencies (BPF) of the two rotors and their combinations.
Keywords: hp two-stage axial turbine; Performance maps; Flow structures; Aerodynamic loading; Vane/blade interactions; Clocking effect (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219301136
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:172:y:2019:i:c:p:1291-1311
DOI: 10.1016/j.energy.2019.01.111
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().