Performance study of supplying cooling load and output power combined cycle using the cold energy of the small scale LNG
Jinghong Ning,
Zhili Sun,
Qiang Dong and
Xinghua Liu
Energy, 2019, vol. 172, issue C, 36-44
Abstract:
The gasification process of small flows of liquefied natural gas also releases large amounts of cold energy and pressure energy. In order to effectively utilize the cold energy and the pressure energy, a combined cycle for supplying cooling load and output power was proposed. In the combined cycle,one refrigeration cycle for food frozen storage, two refrigeration cycles for food cooling storage, two chilled water cycles for air conditioning, R717 is used as working substance of refrigeration cycles. The exergy efficiency and performance coefficient of the combined cycle were analyzed. The exergy efficiency of evaporator is the lowest, the exergy efficiency of each expander and condenser is higher than that of the pump in refrigeration cycles. The exergy efficiency of evaporator, expander, pump and condenser increases with the increase of evaporation temperature of R717 refrigerant. The power consumption of the each chilled water pump for air conditioning is higher than that of the R717 pumps in refrigeration cycles. LNG pump power consumption is lower than that of two chilled water pumps. As the outlet pressure of the NG expander decreases, and the pressure at the inlet of the NG expander increases, the total pump power consumption and the system total expansion output power increases. Among the system total expansion output power, NG expander accounts for more than 2/3. With the increase of the outlet pressure of the NG expander, the system exergy efficiency and the performance coefficient of combined cycle decreases. With the increase of the inlet pressure of the NG expander, the exergy efficiency of the system increases. However the inlet pressure of NG expander rises resulting in reduction in the performance coefficient of the system. And at the same inlet and outlet pressure of NG expander, the mass flow rate of NG increases, the exergy efficiency and the performance coefficient of the system hardly changes. When the mass flow rate of NG is 1 kg/s, and the inlet and outlet pressures of NG expander are 10000 kPa and 600 kPa, the exergy efficiency and the performance coefficient of the system reaches 85.19% and 6.525 respectively.
Keywords: R717 supplying cooling load; Output power; Combined cycle; Cold energy; Small scale LNG (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219301161
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:172:y:2019:i:c:p:36-44
DOI: 10.1016/j.energy.2019.01.094
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().