EconPapers    
Economics at your fingertips  
 

Analysis of the effect of different hydrogen/diesel ratios on the performance and emissions of a modified compression ignition engine under dual-fuel mode with water injection. Hydrogen-diesel dual-fuel mode

J. Serrano, F.J. Jiménez-Espadafor and A. López

Energy, 2019, vol. 172, issue C, 702-711

Abstract: The utilisation of gaseous hydrogen (H2) in compression ignition (CI) engines is a viable option for simultaneously solving the problems of energy efficiency improvements and emissions reduction, including greenhouse gases because combustion does not produce CO2. This paper is the second of three of a study devoted to the analysis of dual combustion (diesel-H2) in internal combustion engines. In this Part II, a diesel engine is modified to run using a hydrogen-diesel mixture as a dual fuel. This mode of operation has been studied for two speeds and different diesel injection strategies, up to a H2/diesel mass ratio of 1. In order to control NOx emissions, intake self-ignition and combustion knocking, water was injected into the intake manifold. The test results show that smoke emissions decrease and NOx emissions increase with an increase in the H2/diesel ratio, but water injection produces a reduction in the NOx emissions of around 50%, with an almost flat efficiency of 37%. This article contains a study of the parametrization of the heat release rate (HRR) to obtain a functional law that allows us to reproduce the HRR through several initial parameters for the cases studied in Parts I (H2 as main fuel) and II.

Keywords: Hydrogen; Water injection; Diesel engine; Dual-fuel; Emissions; Heat release rate (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219302166
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:172:y:2019:i:c:p:702-711

DOI: 10.1016/j.energy.2019.02.027

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:702-711